- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wilber, Mark_Q (2)
-
Altman, Karie_A (1)
-
Brannelly, Laura_A (1)
-
Grasso, Robert_L (1)
-
Joseph, Maxwell_B (1)
-
Knapp, Roland_A (1)
-
LaBumbard, Brandon_C (1)
-
Latella, Ian (1)
-
Le Sage, Emily_H (1)
-
McDonnell, Nina_B (1)
-
Ohmer, Michel_E_B (1)
-
Reinert, Laura_K (1)
-
Richards-Zawacki, Corinne_L (1)
-
Rollins-Smith, Louise_A (1)
-
Saenz, Veronica (1)
-
Smith, Thomas_C (1)
-
Voyles, Jamie (1)
-
Walsman, Jason_C (1)
-
Woodhams, Douglas_C (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Vast alteration of the biosphere by humans is causing a sixth mass extinction, driven in part by an increase in infectious diseases. The emergence of the lethal fungal pathogenBatrachochytrium dendrobatidis(Bd) has devastated global amphibian biodiversity. Given the lack of any broadly applicable methods to reverse these impacts, the future of many amphibians appears grim. The Sierra Nevada yellow-legged frog (Rana sierrae) is highly susceptible to Bd infection and mostR. sierraepopulations are extirpated following disease outbreaks. However, some populations persist and eventually recover, and frogs in these recovering populations have increased resistance against infection. Here, we conduct a 15-year reintroduction study and show that frogs collected from recovering populations and reintroduced to vacant habitats can reestablish populations despite the presence of Bd. In addition, the likelihood of establishment is influenced by site, cohort, and frog attributes. Results from viability modeling suggest that many reintroduced populations have a low probability of extinction over 50 years. These results provide a rare example of how reintroduction of resistant individuals can allow the landscape-scale recovery of disease-impacted species, and have broad implications for amphibians and other taxa that are threatened with extinction by novel pathogens.more » « less
-
Le Sage, Emily_H; Reinert, Laura_K; Ohmer, Michel_E_B; LaBumbard, Brandon_C; Altman, Karie_A; Brannelly, Laura_A; Latella, Ian; McDonnell, Nina_B; Saenz, Veronica; Walsman, Jason_C; et al (, Integrative And Comparative Biology)Synopsis Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host’s stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.more » « less
An official website of the United States government
